Lecture No. 10

« Let us examine Global to Local basis function relationship to explain how global assembly
works by starting with global or cardinal bases and then deconstructing them into local
bases split into elemental components

« Consider the example problem

d?u
W = p(x) 0<x<1
u(x=0)=4
u(x=1)=B8B
o Develop a weak weighted residual formulation
d?u
( dx:pp Widg — (p(x),wj)g =0
du dw; du
(— dc;pp : dx]>ﬂ + (%;Wﬂr —(p(x),wj)o =0

However Wflr = 0 (since all boundaries are essential)

duapp dW]
T Tdx dx Yo — (P(X);thz =0

(



o Divide the domain into 4 elements

Up U Us Uy Us

With a global approximation using cardinal bases (i.e. globally defined trial functions)

uapp = Uld)l + UZCDZ + Ugd)g + U4(p4 + Usd)s

Let’s put off enforcing the b.c.’s until the very end (since we know we canset U; = A
and Uz = B)



« Thus we have 5 unknowns coefficients (U; through Uc), 5 globally defined trial functions

(&, through @) and 5 globally defined weighting or test functions which for Galerkin are
defined as

wy = @
w, = @,
w3 = @3
Wy = @,
wg = @

« Substituting into the symmetrical weak weighted residual statement

d do;
(—— U@y + Uyd + Usbs + Uy + Usb5),—D)g = (p(0), 8)g =0 j =15
=

1 g T2y YU TV T Us g d ), Pl =0 J

=15




e Forj=1

( (U ddbl_l_U dcp2+U dd>3+U do, U dcps) do,
b dx 2 dx 3 dx “ax % dx ) dx

Yo —(p(x),P1)p =0

Since @, is non-zero only in element 1, 2,
dd, do, dd, do,

(= dx ’ dx>91U1+<_ dx ' dx

)91 U; = (p(x), ‘I’1)91

o Forj = 2 (since &, is non-zero only in elements 1 and 2)

do,  do,  do,\ do,
(— (Uld +U2W+U Tx ) Tx )(zlmz (p(x), P2)0,4+0, =0

Further noting that @, is only nonzero in element 1 and @5 is zero in element 1

do, do, do, do, dd,; do,
T dx  dx )gl Uy + (— dx | dx )nlmz 2+ (— dx ' dx )(zz Us = (P(x);d’z)lemz




o Forj = 3 and since @5 is non-zero only in elements 2 and 3

dby  dds  dby) dos
(U4 U =2 U, ) = 0,00, — D0, By, = O

@, is non-zero only in elements 1 and 2
@5 is non-zero only in elements 2 and 3

@, is non-zero only in elements 3 and 4

dd, dd, dd; dd, do, do,
(— dx ' dx )_(22 U + (— dx ’ dx >92+g3 Us + (- dx ' dx >g3 Uy = (p(x), ‘p3>92+93

e Forj =4 and since @, is non-zero only in 25 and (2,

d dd,
<—_ (Us®P3 + Uy®y + U5q§5) >123+124 (p(x), Py 40, =0

@5 is non-zero only in 2, and 05
@, is non-zero only in 25 and 2,
@< is non-zero only in 2,

dd, do, do, do, dd. do,

dx  dx )93 Uz + (— dx | dx ).Q3+.Q4 Uy + (— dx | dx ).(24 Us = (p(x), ¢4)03+Q4

<_



« Forj = 5 and noting that @ is non-zero only in (2,

d dd.
<_E (Uy @y + Us(bs)»W)(z4 — (p(x), 4’5)04 =0

Ao, dods Ao do.
<_ dx ’ dx ).Q4 U4- + <_ dx ’ dx ).(24 U5 — (p(x), ¢5)Q4



These 5 equations can readily be assembled into a global system
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do, do,
dx = dx
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U, [ <p(x)i(p1>.(21 |
1

U, (p(x), ‘p2>91+92
Us| = (p(x),<1>3)92+93
Uy (p(x), ¢4)93+Q4
Ush | (o), @5)g,

« We note that to enforce b.c.’s globally we simply setU; = Aand Us = B => W, =
0, W = 0 eliminating the first and last equation which we replace with
1.0xU; =A and 1.0xUs =B

« Prior to enforcing the boundary conditions we have 5 equations and 5 unknowns
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« However we can also split the global system all into elemental systems

(p(x), <1>1>91]
(p(x), P2)0,

{p(x), CPz)gZ]
(p(x), P3)q,

(p(x), <P3>03]
(D(x), Py)q,

(p(x), ¢4)g4]
(p(x), 4’5)(24



in 0y

1
Uy = ug

U2—>u%
¢1_’¢%
<I>2—>q§%

U, - uj
U3—>u%
D, > P2
2 1

‘I’3_’¢%

Us; = uy
U, - us
D3 > 3
3 1

‘p4_’¢§

4
Uy, = uj

U5—>ug
4
b, - ¢P]

‘I’s_’ﬁbg



Now the systems can be expressed locally as
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« Thus we can conclude that
v The local problems can be assembled into a global summation. This summed set of
local problems is identical to the original global expansions!!
v Boundary conditions are implemented as a last step
v' Each element is expanded locally, then assembled locally
v" Note that if we transform each local element into a unit element all basis functions

look exactly alike once we are operating in that element



